Durable and dependable dovetail slides
A selection of sizes for tooling, work feeding and positioning operations
Complete Gilman USA slide selection

Dovetail slides

ND (NextDay) line:
(In stock—ships in one business day from order)
- Immediate delivery off-the-shelf product
- In widths of 4", 6", 8", 10"
- Saddle travels of 4", 6", 8", 10"
- Reversible screw drive end and gib side
- Includes holes for mounting and compounding
- Matching angle brackets

L & H tool slide line:
- 2", 3", 4", 6", 8" widths
- Lead screw drives
- Off-the-shelf product

CP line:
- 4", 6", 8" widths
- Air or hydraulic cylinder drives
- Plate mounted

DC line:
- 2" to 20" widths
- Length and travels built-to-order
- Several drive styles

Hardened steel way slides

Basic and drive equipped:
This catalog contains complete hardened way slide specifications
- 5" to 32" widths
- Travel and slide lengths built-to-order
- Several drive styles
- Production cycle durability
- Good for heavy machining application

Linear slides

Built-to-order
- Ball or roller styles
- Used for high-precision, high-speed applications
- High-speed drives
- Preloaded bearings

Table of contents

<table>
<thead>
<tr>
<th>Product features</th>
<th>Application engineering data</th>
<th>L section</th>
<th>H section</th>
<th>NextDay (ND) section</th>
<th>CP section</th>
<th>DC section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Basic</td>
<td>Lead screw</td>
<td></td>
<td>Basic</td>
<td>Ordering instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lead screw</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydraulic cylinder, stop rod</td>
<td>19, 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air cylinder, stop rod</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air cylinder, hydraulic check, stop rod</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air and hydraulic cylinder, two positions</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DC accessories</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special assemblies</td>
<td>25, 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Idea bulletins</td>
<td>27-29</td>
</tr>
</tbody>
</table>

The Engineering Department of Gilman USA reserves the right to change specifications without notice. Do not base final decisions on catalog drawings — ask for a certified print when you order a slide. If servicing should be required on any Gilman USA slide, we suggest the unit be returned for factory service. For non-standard applications (e.g., dovetail slides with high-frequency and short stroke) contact Gilman USA.

All dimensions are in inches unless otherwise indicated.
Dovetail slides

Gilman USA solutions for machine tool builders and users

Take advantage of exclusive Gilman USA technologies and craftsmanship.

Whether your end application is a special machine or an OEM product line, Gilman USA will provide you with responsive engineering, precision manufacturing and prompt, efficient after-sale service.

Gilman USA slide assemblies are designed and built to promote smooth, accurate, long-life operation. Both the base and saddle are made from close-grained cast iron which are properly normalized to minimize distortion. Both saddle and base are machined and ground parallel on top and bottom surfaces after assembly for a flat, accurate mounting surface. The saddle and base may be easily drilled, tapped or machined to accommodate specific mounting requirements.

Accurately milled way slides will operate with ease and precision in most ordinary applications. Milled slides are designated by the letter “M” in the “Model number code.”

Hand-scraped way slides have a lower coefficient of friction, operate smoother, are more precise, and have a longer life than milled slides. Scraped slides are designated by the letter “S” in the “Model number code.”

Reduce your design and manufacturing time and costs. Gilman USA standard stock slide assemblies give you substantial dollar savings wherever in-line precision movements are required in your special or semi-special mechanical equipment. Gilman USA slide modules can be easily assembled together, or with other Gilman USA modular components to build special production machines quickly and efficiently. Slides are available in sizes from 2” to 20” widths, saddle lengths to 36”, and base lengths to 96”. Longer lengths available upon request.

For prompt service please provide complete information with the order. You can readily build up the slide model number as you decide on the section, width, saddle length, base length, way surface, type of drive, and travel. See “Model number code” on page 17.

Gilman USA is a leading global supplier of machine tool automation components. Gilman USA facilities, equipment and application engineering assistance help solve your most challenging design problems. Our ISO 18000 quality standards assure that our products are accurate, reliable, precise and durable.
Product features

Six basic parts

1. **Lubrication fitting**
 - The lubrication fittings are standard on all slide assemblies except the “L” and “ND” section basic and lead screw series. Passages drilled in slide allow lubricant to get to vital way surfaces to reduce friction and promote long life. Lubrication fittings can be easily removed and proper meter fittings installed for connection to a lubrication system. Mobil Vactra #2 oil or equivalent is recommended for lubricating slide ways.

2. **Gib**
 - This part may easily be adjusted to regulate the clearance between the way surfaces. The gib is adjusted at the factory before shipping to suit most applications; however, in some cases, a tighter or a looser setting may be desired. This can easily be accomplished in the field. Gibs are manufactured from accurately ground, low carbon steel and are equal to the saddle length.

3. **Gib screw**
 - These are special socket head screws, properly spaced along one side of the saddle for adjusting the gib.

4. **Gib screw nut**
 - The gib screw nut locks the gib screw in place to maintain the adjustment on the gib.

5. **Saddle**
 - The saddle is generally the moving member and has the female part of the dovetail.

6. **Base**
 - The base is generally the stationary member and has the male part of the dovetail.

Lubrication

Mobil Vactra #2 oil or equivalent is recommended for lubricating slide ways.

Do not use grease!

Use these charts and formulas as a guide to determine the lube area or the amount of lubrication required for the slide. Lubrication requirements may vary depending on your application. Consult our factory for further assistance.

Dovetail slide tolerances*

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC2</td>
<td>1.0</td>
<td>1.0</td>
<td>.08</td>
</tr>
<tr>
<td>DC3</td>
<td>1.1</td>
<td>1.1</td>
<td>.09</td>
</tr>
<tr>
<td>H4, CP4, DC4</td>
<td>1.4</td>
<td>1.4</td>
<td>.11</td>
</tr>
<tr>
<td>H6, CP6, DC6</td>
<td>1.9</td>
<td>1.9</td>
<td>.15</td>
</tr>
<tr>
<td>H8, CP8, DC8</td>
<td>2.2</td>
<td>2.2</td>
<td>.18</td>
</tr>
<tr>
<td>DC10</td>
<td>3.2</td>
<td>3.2</td>
<td>.25</td>
</tr>
<tr>
<td>DC12</td>
<td>3.5</td>
<td>3.5</td>
<td>.28</td>
</tr>
<tr>
<td>DC16</td>
<td>5.5</td>
<td>4.8</td>
<td>.44</td>
</tr>
<tr>
<td>DC20</td>
<td>6.2</td>
<td>5.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

SL = Saddle length (inches)

T = Travel (inches)

A = Number of lube points

B = Solid side way width (inches)

C = Gib side way width (inches)

D = Lube factor (cc/in–hr)

LB = Lube area/lube point solid side (in²)

LC = Lube area/lube point gib side (in²)

LD = Lube req. (cc/hr)

\[
LB = \frac{(SL)(B)(2)}{A} \quad LC = \frac{(SL)(C)(2)}{A} \quad LD = (SL+T)(D)
\]

Overall height = ± .005 in

Vertical tracking:
- Milled = .001 in/ft
- Scraped = .0005 in/ft

Horizontal tracking:
- Milled = .001 in/ft
- Scraped = .0005 in/ft

Parallelism:
- Saddle to base = .001 in/ft

| G | .0005 in/ft |
| H | .0005 in/ft |

*Higher accuracies available upon request. See page 14 for NextDay dovetail slide tolerances.
Application engineering data

Slide mounting

Drawings at the right show the most common mounting positions of dovetail slides. When slides are mounted other than horizontal, the load capacity changes and in some cases lubrication holes and grooves have to be altered. Specify if mounting is other than horizontal when ordering.

Slide loading

This data should be used as a guide to determine the size of a slide for a particular application. All values are for uniformly distributed loads and moments, and the saddle is assumed to be a rigid member. Some conditions may allow the use of higher load values (e.g. rough machining or positioning applications), while other conditions dictate the use of lower values (e.g. precision boring or grinding applications). For saddle lengths longer than two times the width, and if deflections are critical, please consult our factory for load capacity.

Slide loading definitions

A = Slide width (inches)
D = Down load factor
LD = Vertical load down (lbs)
LS = Horizontal load side (lbs)
LU = Vertical load up (lbs)
L = Length moment load factor
M = Moment about saddle length (in-lbs)
M1 = Moment about plane of saddle top (in-lbs)
M0 = Moment about saddle width (in-lbs)
P = Load producing moment (lbs)
S = Side load factor
T = Top moment load factor
U = Up load factor
W = Width moment load factor

Maximum load calculations:
LD max. = D x SL (lbs)
LU max. = U x SL (lbs)
LS max. = S x SL (lbs)

Maximum moment calculations:
M0 max. = W x SL (in-lbs)
M1 max. = T x (SL)² (in-lbs)
M0 max. = L x (SL)² (in-lbs)

*Dynamic load factors for manual powered slides should be cut in half unless low-friction bearing material is used.
Application engineering data

DC section: Slide thrust and torque

The force required to power the slide assembly (FH and FV), includes the force to overcome all external loads as shown under “Slide loading” (page 5), plus the force required to power the saddle assembly times a factor of safety. The factor of safety (depending on the type of drive used, see “FS” under “Slide thrust and torque definitions”) is applied to insure sufficient power to move the load and overcome friction due to variables such as lubrication, machining tolerances, finish, etc.

The torque required to accelerate or decelerate the slide is dependent upon the moving weight, screw size, the force applied to the slide and the rate of acceleration or deceleration. Please consult the motor manufacturer you selected for this analysis.

The thrust values obtained from the calculation must be checked against the maximum thrust capacities (pages 19–23), for the drive model being used. If acceleration time is critical or speeds above 350 ipm are required, please consult our factory for power requirements.

<table>
<thead>
<tr>
<th>Model</th>
<th>TS (in-lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acme screw</td>
</tr>
<tr>
<td>DC4</td>
<td>8</td>
</tr>
<tr>
<td>DC6</td>
<td>8</td>
</tr>
<tr>
<td>DC8</td>
<td>8</td>
</tr>
<tr>
<td>DC10</td>
<td>13</td>
</tr>
<tr>
<td>DC12</td>
<td>15</td>
</tr>
<tr>
<td>DC16</td>
<td>15</td>
</tr>
<tr>
<td>DC20</td>
<td>18</td>
</tr>
</tbody>
</table>

Slide thrust and torque definitions

- \(F_H \) = Force req. to power slide horizontally (lbs)
- \(F_V \) = Force req. to power slide vertically (lbs)
- \(F_D \) = Force req. to overcome saddle drag (lbs)
- \(10 \text{ lbs} – 75 \text{ lbs} \)
- Drag force is affected by several factors including gib adjustment, way wipers, way covers, lubrication and slide size. Use lower values for smaller slides and higher values for larger slides.
- \(F_{SLH} \) = Force to power saddle weight horizontally (lbs)
- \(F_{SLV} \) = Force to power saddle weight vertically (lbs)
- \(F_L \) = Force to overcome loads \(L_D, L_U, L_S \) (lbs)
- \(F_{ML} \) = Force to overcome moment \(M_L \), and load \(P \) (lbs)
- \(F_{MW} \) = Force to overcome moment \(M_W \), and load \(P \) (lbs)
- \(F_{MT} \) = Force to overcome moment \(M_T \), and load \(P \) (lbs)

Thrust calculations:\(^\ddagger\)

- \(F_H = (F_D + F_{SLH} + F_L + F_{ML} + F_{MW} + F_{MT})FS \)
- \(F_V = (F_D + F_{SLV} + F_L + F_{ML} + F_{MW} + F_{MT})FS \)
- \(F_{SLH} = (\mu)(W_{SL})(SL) \)
- \(F_{SLV} = (W_{SL})(SL) \)
- \(F_L = (\mu)(L_D + L_U + L_S) \)
- \(F_{ML} = (3\mu)(M_L/SL) + P \)
- \(F_{MW} = (2\mu)(M_W/H) + (\mu)(P) \)
- \(F_{MT} = (3\mu)(M_T/SL) + P \)

Torque calculations:

- \(T_H = T_D + (K)(F_H)(L) \)
- \(T_V = T_D + (K)(F_V)(L) \)

\(^\ddagger\) All forces, loads and moments must be added using correct signs positive or negative.
Low profile basic slide assemblies are useful for a broad range of applications where the load induced into the assembly is moderate and a compact design is essential.

Basic slide assemblies consist of a saddle, base, gib and gib adjusting screws. They are designed for installations where the means of movement, mounting, and all other details are provided by the customer.

Way surfaces can be supplied either milled or scraped.

For high profile basic slide assemblies, see page 11. For dovetail cavity assemblies, see page 17.

Model number	Dimensions (inches)	Approx. weight (lbs)
Milled	Scraped	A
L2-3-3⁄4-M | L2-3-3⁄4-S | 2 | 3 | 3⁄4 | 3⁄8 | 1⁄2 | 1 | 3 | 9⁄16 | 1 1⁄8 | 1 3⁄8 | 41⁄64 | 1 1⁄4 |
L2-4-1-M | L2-4-1-S | 2 | 4 | 1 | 3⁄8 | 1⁄2 | 3 | 9⁄16 | 1 1⁄8 | 1 3⁄8 | 41⁄64 | 1 1⁄4 |
L2-6-2-M | L2-6-2-S | 2 | 6 | 2 | 9⁄16 | 3⁄4 | 4 | 9⁄16 | 1 1⁄8 | 1 3⁄8 | 41⁄64 | 2 1⁄4 |
L3-4-1-M | L3-4-1-S | 3 | 4 | 1 | 1 | 11⁄16 | 5⁄8 | 1 1⁄2 | 3 | 9⁄16 | 2 1⁄8 | 2 1⁄8 | 3 1⁄2 |
L3-5-1-M | L3-5-1-S | 3 | 5 | 1 | 1 | 11⁄16 | 11⁄16 | 1 1⁄4 | 4 | 9⁄16 | 2 1⁄8 | 2 1⁄8 | 3 1⁄2 |
L3-6-2-M | L3-6-2-S | 3 | 6 | 2 | 1 | 11⁄16 | 3⁄4 | 1 1⁄2 | 4 | 9⁄16 | 2 1⁄8 | 2 1⁄8 | 3 1⁄2 |
L4-6-1-M | L4-6-1-S | 4 | 6 | 1 | 1 1⁄8 | 11⁄16 | 5⁄8 | 1 1⁄2 | 4 | 9⁄16 | 3 1⁄4 | 1 1⁄4 | 8 1⁄2 |
L4-8-2-M | L4-8-2-S | 4 | 8 | 2 | 1 1⁄8 | 11⁄16 | 11⁄16 | 1 1⁄2 | 4 | 9⁄16 | 3 1⁄4 | 1 1⁄4 | 10 1⁄2 |
L4-12-3-M | L4-12-3-S | 4 | 12 | 3 | 1 1⁄8 | 11⁄16 | 11⁄16 | 1 1⁄2 | 4 | 9⁄16 | 3 1⁄4 | 1 1⁄4 | 16 1⁄2 |
L6-8-2-M | L6-8-2-S | 6 | 8 | 2 | 1 1⁄8 | 1 1⁄8 | 1 1⁄8 | 1 1⁄2 | 4 | 9⁄16 | 4 1⁄2 | 1 1⁄8 | 19 |
L6-12-4-M | L6-12-4-S | 6 | 12 | 4 | 1 1⁄8 | 1 1⁄8 | 1 1⁄8 | 1 1⁄2 | 4 | 9⁄16 | 4 1⁄2 | 1 1⁄8 | 27 |
L6-16-4-M | L6-16-4-S | 6 | 16 | 4 | 1 1⁄8 | 1 1⁄8 | 1 1⁄8 | 1 1⁄2 | 4 | 9⁄16 | 4 1⁄2 | 1 1⁄8 | 38 |

Gib lock handle available at additional cost (two on 16” long saddle).
L section

Low profile lead screw

Low profile lead screw assemblies are useful for many applications where accurate manual positioning or feeding is needed.

These slide assemblies feature a precision lead screw, a graduated micrometer dial measuring in .001 inch of saddle travel, and a selection of drive ends. "Style A" has a balanced crank handle for ease and speed in advancing or retracting the saddle. "Style B" is ideal where space is limited and a knurled knob is sufficient for adjustment.

Way surfaces can be supplied either milled or scraped. For other lead screw slide assemblies, see pages 12, 13, 19 and 20.

#### Model number	Dimensions (inches)	Approx. weight (lbs)
Milled	Scraped	A
L2-3-½-M-L	L2-3-½-S-L	2
L2-4-1-M-L	L2-4-1-S-L	2
L2-4-2-M-L	L2-4-2-S-L	2
L3-4-1-M-L	L3-4-1-S-L	3
L3-4-1-M-L	L3-5-1-S-L	3
L3-6-2-M-L	L3-6-2-S-L	3
L4-6-1-M-L	L4-6-1-S-L	4
L4-8-2-M-L	L4-8-2-S-L	4
L4-12-3-M-L	L4-12-3-S-L	4
L6-8-2-M-L	L6-8-2-S-L	6
L6-12-4-M-L	L6-12-4-S-L	6
L6-16-4-M-L	L6-16-4-S-L	6

*Acme thread lead screw available at additional cost.

Gib lock handle available at additional cost (two on 16” long saddle).

‡Dimensions are approximate.
L section

Low profile lead screw compound

Slide assemblies are useful for many applications where two-axis, accurate manual positioning or feeding is needed.

These compound slide assemblies are made from standard lead screw assemblies which are accurately bolted together with the travel 90° to each other. All the features pertaining to the standard lead screw assemblies apply to the compounds. For ease of installation, mounting holes are provided in the base of the "X axis" slide.

Way surfaces can be supplied either milled or scraped. On special request, where practical, other slide combinations can be provided besides those shown. See lead screw assemblies on pages 8, 12, 13, 19 and 20 or basic assemblies on pages 7, 11 and 18.

Add "M" for milled or "S" for scraped slide assemblies.

Gib lock handle available at additional cost (two on 16" and 18" long saddles).

†Dimensions are approximate.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Dimensions (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z axis</td>
<td>X axis</td>
</tr>
<tr>
<td>L2-3-3⁄4-*-L</td>
<td>L2-6-2--*-L</td>
</tr>
<tr>
<td>L2-4-1-*-L</td>
<td>L2-4-1-*-L</td>
</tr>
<tr>
<td>L3-4-1-*-L</td>
<td>L3-5-1-*-L</td>
</tr>
<tr>
<td>L3-6-2-*-L</td>
<td>L4-12-3--*-L</td>
</tr>
<tr>
<td>L4-6-1-*-L</td>
<td>L4-12-3--*-L</td>
</tr>
<tr>
<td>L4-8-2-*-L</td>
<td>L4-12-3--*-L</td>
</tr>
<tr>
<td>L4-12-3-*-L</td>
<td>L4-12-3--*-L</td>
</tr>
<tr>
<td>L6-8-2-*-L</td>
<td>L6-12-4-*-L</td>
</tr>
<tr>
<td>L6-12-4-*-L</td>
<td>L6-16-4-*-L</td>
</tr>
</tbody>
</table>

*Add "M" for milled or "S" for scraped slide assemblies.

Dimensions are approximate.
L section

Low profile lead screw with angle bracket

A low profile lead screw slide assembly bolted to a 90° angle bracket has many uses where accurate manual positioning or feeding is needed. These units can be floor mounted to give vertical travel or wall mounted to provide horizontal travel. It is easy to make a three-axis slide assembly by mounting one of these units to one of the compound slide assemblies shown on page 9.

All the features pertaining to the standard lead screw assemblies apply to these. See "L" lead screw assemblies, page 8. For ease of installation, mounting holes are provided in the angle bracket.

Way surfaces can be supplied either milled or scraped.

Model number

<table>
<thead>
<tr>
<th>Model number</th>
<th>Dimensions (inches)</th>
<th>Approx. weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milled</td>
<td>Scrapped</td>
<td>A</td>
</tr>
<tr>
<td>L2-3-¾-M-LA</td>
<td>L2-3-¾-S-LA</td>
<td>2</td>
</tr>
<tr>
<td>L2-4-1-M-LA</td>
<td>L2-4-1-S-LA</td>
<td>2</td>
</tr>
<tr>
<td>L2-6-2-M-LA</td>
<td>L2-6-2-S-LA</td>
<td>2</td>
</tr>
<tr>
<td>L3-4-1-M-LA</td>
<td>L3-4-1-S-LA</td>
<td>3</td>
</tr>
<tr>
<td>L3-5-1-M-LA</td>
<td>L3-5-1-S-LA</td>
<td>3</td>
</tr>
<tr>
<td>L3-6-2-M-LA</td>
<td>L3-6-2-S-LA</td>
<td>3</td>
</tr>
<tr>
<td>L4-6-1-M-LA</td>
<td>L4-6-1-S-LA</td>
<td>4</td>
</tr>
<tr>
<td>L4-8-2-M-LA</td>
<td>L4-8-2-S-LA</td>
<td>4</td>
</tr>
<tr>
<td>L4-12-3-M-LA</td>
<td>L4-12-3-S-LA</td>
<td>4</td>
</tr>
<tr>
<td>L6-8-2-M-LA</td>
<td>L6-8-2-S-LA</td>
<td>6</td>
</tr>
<tr>
<td>L6-12-4-M-LA</td>
<td>L6-12-4-S-LA</td>
<td>6</td>
</tr>
<tr>
<td>L6-16-4-M-LA</td>
<td>L6-16-4-S-LA</td>
<td>6</td>
</tr>
</tbody>
</table>

Gb lock handle available at additional cost (two on 16" long saddle).
†Dimensions are approximate.
High profile slide assemblies are useful for a broad range of applications where the nature of the work to be done requires a more rugged construction than the "L" section slide assemblies. Greater stability and capacity are accomplished by increasing the thickness of the saddle and base. The increased height of the saddle also allows greater flexibility for machining mounting requirements.

Basic slide assemblies consist of a saddle, base, gib and gib adjusting screws. They are designed for installations where the means of movement, mounting, and all other details are provided by the customer.

Way surfaces can be supplied either milled or scraped. For other basic slide assemblies, see pages 7 and 18.

### Model number	Dimensions (inches)	Approx. weight (lbs)
Model number	A	B
Milled	Scraped	
H4-8-2-M	H4-8-2-S	4
H4-12-4-M	H4-12-4-S	4
H6-12-4-M	H6-12-4-S	6
H6-16-6-M	H6-16-6-S	6
H8-18-6-M	H8-18-6-S	8
H8-24-8-M	H8-24-8-S	8

Gib lock handle available at additional cost (two on 16", 18" and 24" long saddles).
H section

High profile lead screw slide assemblies are useful for many heavy service applications where accurate manual positioning or feeding is needed.

These slide assemblies feature a precision lead screw, needle thrust bearings, a graduated micrometer dial measuring in .001 inch of saddle travel, and a selection of drive ends. “Style A” has a balanced crank handle for ease and speed in advancing or retracting the saddle. “Style B” is ideal where space is limited and a knurled knob is sufficient for adjustment.

Way surfaces can be supplied either milled or scraped. For other lead screw slide assemblies, see pages 8, 13, 19 and 20.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Dimensions (inches)</th>
<th>Approx. weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milled</td>
<td>Scraped</td>
<td>A</td>
</tr>
<tr>
<td>H4-8-2-M-L</td>
<td>H4-8-2-S-L</td>
<td>4</td>
</tr>
<tr>
<td>H4-12-4-M-L</td>
<td>H4-12-4-S-L</td>
<td>4</td>
</tr>
<tr>
<td>H6-12-4-M-L</td>
<td>H6-12-4-S-L</td>
<td>6</td>
</tr>
<tr>
<td>H6-16-6-M-L</td>
<td>H6-16-6-S-L</td>
<td>6</td>
</tr>
<tr>
<td>H8-18-6-M-L</td>
<td>H8-18-6-S-L</td>
<td>8</td>
</tr>
<tr>
<td>H8-24-8-M-L</td>
<td>H8-24-8-S-L</td>
<td>8</td>
</tr>
</tbody>
</table>

*Acme thread lead screw available at additional cost.

+Lock handle available at additional cost (two on 16”, 18” and 24” long saddles).

†Dimensions are approximate.
ND section
NextDay self-compounding design

A complete dovetail kit: ready-to-go!

This heavy-duty slide is a precision ground dovetail slide featuring a low-profile, saddle/base design. The product line is engineered for a variety of user compoundable configurations. An angle bracket is available for a vertical mount application. Slide width, saddle length and saddle travel all have proportional relationships in this building block concept.

The complete application package

- Shipped within one business day of placing your order
- 100% computer designed. DXF and DWG files are available for download online at www.gilmanusa.com
- Pre-engineered base, saddle and angle plate
- Self-compounding structure
- Precision ground
- Cast iron base and saddle
- Low maintenance lubricating
- Product lifting holes for ND8 and ND10

“Zero reset dial” adjustable .001” micrometer dial and locking thumb screw to adjust the zero setting

Adjustable anti-backlash drive block and take-up nut

Saddle lock, adjustable gib lock handle

Steel gib adjustment screws

Alternate drive position

Steel gib

Way wipers

Eight (8) mounting or compounding bolts

Heavy duty steel end plate with thrust bearing

Base mounting holes

Product service and parts manual

Slide way oil, gib wrench, take-up nut allen wrench

NextDay Slide User’s Manual
ND section

NextDay self-compounding design (ND)

A building-block approach

NextDay dovetail slides (ND) are easy to reconfigure. Assemble compound axes by using the holes provided on the base, saddle and angle bracket.

ND6 slide shown. DXF and DWG files available on-line at www.gilmanusa.com for all models.

NextDay dovetail slide tolerances**

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions (inches)</th>
<th>Acme lead screw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NDA4/ND4*</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDA6/ND6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>NDA8/ND8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>NDA10/ND10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

*ND4 base has a square cavity.
†Dimensions are approximate.

Overall height: ± .010 in
Vertical tracking: ≤ .001 in/ft
Horizontal tracking: ≤ .001 in/ft
Parallelism: ≤ .001 in/ft
Saddle to base: ≤ .001 in/ft

**Gilman USA DC dovetail slide line offers higher accuracies and additional features.
Angle brackets for precision 90° mounting

NextDay angle brackets (NDA) allow mounting of two Gilman USA NextDay (ND) slides, of the same size, at 90-degree angles to each other. The base of the angle bracket is the same size as the saddle of the NextDay (ND) slide. The base of the angle bracket has eight mounting holes so the bracket can align with any of the four sides of the saddle. The mounting face of the angle bracket is the same size as the base of the respective NextDay slide size and has drilled and tapped holes that correspond to the slide base mounting holes.

Gilman USA angle brackets for NextDay (ND) slides are painted or black-oxide coated for corrosion resistance.

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND4</td>
<td>17</td>
</tr>
<tr>
<td>NDA</td>
<td>48</td>
</tr>
<tr>
<td>ND</td>
<td>646</td>
</tr>
<tr>
<td>NDA</td>
<td>626</td>
</tr>
<tr>
<td>ND8</td>
<td>111</td>
</tr>
<tr>
<td>NDA8</td>
<td>58</td>
</tr>
<tr>
<td>ND10</td>
<td>213</td>
</tr>
<tr>
<td>NDA10</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: The NDA8 and NDA10 angle brackets are not stocked and will be made to order.
Gilman USA cylinder powered (CP) slide assemblies are designed to provide efficient positioning and feeding of either the piece part or the machining head, in addition to a variety of other uses.

The cylinder is mounted in-line with the saddle to a base casting to minimize height requirements. Adjustable stops are provided to regulate the length of travel. Either an air or a hydraulic cylinder is available. Cylinders are of standard square-head, medium pressure type.

It is recommended that where part or all the travel cycle requires a smooth, controlled feed, a hydraulic cylinder be used. If an air powered slide assembly with a controlled feed is desired, we recommend one of the models with a hydraulic check, such as shown on page 22.

Way surfaces are oil grooved and scraped to ensure adequate lubrication and precision operation.

For limit switches and lubrication system see page 24.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Dimensions (inches)</th>
<th>Approx. weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>CP4-8-2-PM-*</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>CP4-12-4-PM-*</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>CP6-12-4-PM-*</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>CP6-16-6-PM-*</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>CP8-18-6-PM-*</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>CP8-24-8-PM-*</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

*Add “AC” for air cylinder or “HC” for hydraulic cylinder.
‡CP4 A/2 = 2.
DC section

Dovetail slide ordering information

Building the slide model number

Gilman USA dovetail slides are defined by using simple model numbers to classify the standard features desired. The “DC” slides offer a series of pre-engineered choices that have been application tested.

1. Select the section and width. This is the width (in inches) of the slide saddle. Refer to the data charts for specific dimensions.
2. Select saddle length. This is the length (in inches) of the slide saddle. Refer to the data charts for specific dimensions.
3. Select the base length. This is the length (in inches) of the slide base. Refer to the data charts for specific dimensions.
4. Determine the way surface. Slide surfaces can be either milled or scraped. Indicate the surface type you prefer with either an “M” or “S” designation.
5. Choose a slide drive type. Select from 19 slide drive types to fit a variety of applications.
6. Select the travel. Specify the distance (in inches) that the saddle will travel. Refer to the data charts for specific dimensions.
7. Select accessories. Include accessories added to the slide. See page 24 for available accessories.

Model number code

<table>
<thead>
<tr>
<th>DC section & model width</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saddle length</th>
<th>See pages 18-23 for min. and max. lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base length</td>
<td>See pages 18-23 for min. and max. lengths</td>
</tr>
<tr>
<td>Way surface*</td>
<td></td>
</tr>
<tr>
<td>Milled</td>
<td>M</td>
</tr>
<tr>
<td>Scraped</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slide drive type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme screw in-line handwheel</td>
<td>A3</td>
</tr>
<tr>
<td>Acme screw in-line keyed shaft</td>
<td>B1</td>
</tr>
<tr>
<td>Acme screw in-line hex. shaft</td>
<td>C1</td>
</tr>
<tr>
<td>Acme screw right angle handwheel</td>
<td>E1</td>
</tr>
<tr>
<td>Acme screw right angle keyed shaft</td>
<td>F1</td>
</tr>
<tr>
<td>Acme screw right angle hex. shaft</td>
<td>G1</td>
</tr>
<tr>
<td>Ball screw - keyed shaft</td>
<td>D1B</td>
</tr>
<tr>
<td>Ground screw (inch) - keyed shaft</td>
<td>D2B</td>
</tr>
<tr>
<td>Ground screw (metric) - keyed shaft</td>
<td>D3B</td>
</tr>
<tr>
<td>Ball screw - motor mount</td>
<td>M2B</td>
</tr>
<tr>
<td>Ground screw (inch) - motor mount</td>
<td>M2B</td>
</tr>
<tr>
<td>Ground screw (metric) - motor mount</td>
<td>M3B</td>
</tr>
<tr>
<td>Hydraulic cylinder</td>
<td>H1</td>
</tr>
<tr>
<td>Hydraulic cylinder stop rod</td>
<td>H2</td>
</tr>
<tr>
<td>Hydraulic cylinder two position</td>
<td>H3</td>
</tr>
<tr>
<td>Air cylinder</td>
<td>P1</td>
</tr>
<tr>
<td>Air cylinder stop rod</td>
<td>P2</td>
</tr>
<tr>
<td>Air cylinder two position</td>
<td>P3</td>
</tr>
<tr>
<td>Air cylinder hydraulic check stop rod</td>
<td>P4</td>
</tr>
</tbody>
</table>

DC8-12-22-S-H2-7 With way wipers

[Specify saddle length, base length and travel in inches.

*A Specify scraped way surface for all ball screw and cylinder powered slides.

□ Specify maximum traverse rate for ball screw slides. Saddle in (ipm) or ball screw (rpm).]

Accessories must be specified when ordering. Be sure to include any additional information required when ordering accessories. See page 24 for accessories.
"DC" slide assemblies are versatile because of their availability in one-inch increments of saddle and base length. This means the designer can use a slide to meet his specific length requirements, often resulting in a savings of cost and space.

Basic slide assemblies (except DC2 and DC3) are manufactured with a longitudinal cavity in the base, permitting a more compact design when mounting the saddle drive. The cavity also reduces the weight of the assembly. In some applications, a base without the cavity may be advantageous because of the nature of the forces applied or certain mounting requirements. This is available at additional cost by specifying "with solid base section."

Gib lock handles provide an easy way to lock the saddle in a desired position. For convenience on the DC4 through DC20 sizes, the lock handles may be adjusted to lock in different angular positions.

Way surfaces can be supplied either milled or scraped. For other types of basic slide assemblies, see pages 7 and 11.

For available accessories see page 24.

DC section

Dovetail slide basic

<table>
<thead>
<tr>
<th>Model</th>
<th>1-inch increments</th>
<th>Dimensions (inches)</th>
<th>Approx. weight (lbs) per inch length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL</td>
<td>BL</td>
<td>A</td>
</tr>
<tr>
<td>DC2</td>
<td>2</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>DC3</td>
<td>3</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>DC4</td>
<td>4</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>DC6</td>
<td>6</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>DC8</td>
<td>8</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>DC10</td>
<td>10</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>DC12</td>
<td>12</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>DC16</td>
<td>16</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>DC20</td>
<td>20</td>
<td>36</td>
<td>21</td>
</tr>
</tbody>
</table>

For available accessories see page 24.
Lead-screw-powered slides are available in twelve different drive configurations.

All acme screw models are used primarily for hand positioning and can be furnished with either an in-line drive as shown below or a 2:1 reduction, right-angle drive, which can be positioned eight ways as shown on page 20. Please specify position number when ordering.

All acme screw models are furnished with gib lock handles, a micrometer dial, a needle bearing thrust assembly, an acme screw (X) and a bronze nut.

On slides powered with ball screw drive assemblies, way surfaces are oil grooved and scraped to ensure adequate lubrication and precision operation.

The A1 and E1 drives incorporate a balanced hand wheel. The B1 and F1 drives have a keyed shaft extension to which various types of mechanical drives can be attached (consult factory for applications other than manual). The C1 and G1 drives have a hexagon end for wrench adjustment and are used when space is limited and adjustments are infrequent.

For dimensions not shown, see basic assemblies on page 18.
DC section
Dovetail slide lead screw

The ball screw drives are used for powered applications where the purchaser provides and mounts the driving source. Each slide has a thrust assembly, which uses a pair of preloaded ball bearings. D1 and M1 feature rolled ball screws with nonpreloaded ball nuts. D2 and M2 inch or D3 and M3 metric feature precision ground ball screws with preloaded ball nuts. Preselected ball nuts with .005 maximum backlash are available on request for the D1 and M1 drive assemblies. It is highly recommended that all ball screws are protected from contaminants (chips and dirt) or accidental damage from tools or work pieces.

Total lost motion of slide drive assembly includes backlash in ball nut, plus backlash in thrust assembly, plus deflection in the system (due to load). Consult factory in applications where positioning is critical.

For available accessories, see page 24.

Please specify maximum traverse rate when ordering. Saddle in (ipm) or ball screw in (rpm).

X – Acme lead screw L.H. thread
Maximum lead error: .003 in/ft
Maximum nut backlash: .005 inch
Standard on A1, B1, C1, E1, F1, and G1 drives

D2, M2 – Ground inch ball lead screw R.H. thread
Maximum lead error: .0005 in/ft
Zero nut backlash.

D3, M3 – Ground metric ball lead screw R.H. thread
Maximum lead error: .0005 in/ft (.04mm/M)
Zero nut backlash.

M1, M2, M3 – Motor mount and coupler
For customer-supplied motor, consult factory for dimensions.
DC section

Dovetail slide hydraulic cylinder stop rod (H2)

These slides are ideally suited where the smoothness and power of a hydraulic cylinder are required. The proper size slide is readily available because of the flexibility in the saddle, base and travel lengths, which are in one-inch increments.

The hydraulic cylinder is cushioned on both ends for a smooth, gentle stop. Cylinders are of the standard, square-head, medium pressure type. Adjustable stops are provided to regulate the length of travel and may be changed easily to accommodate different travel requirements.

Way surfaces are oil grooved and scraped to ensure adequate lubrication and precision operation.

For available accessories see page 24.

<table>
<thead>
<tr>
<th>Model</th>
<th>1-inch increments</th>
<th>Dimensions (inches)</th>
<th>Approx. weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>A</td>
</tr>
<tr>
<td>DC4</td>
<td>2</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>DC6</td>
<td>2</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>DC12</td>
<td>2</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>DC16</td>
<td>2</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>DC20</td>
<td>2</td>
<td>34</td>
<td>8</td>
</tr>
</tbody>
</table>
DC section

Dovetail slide air cylinder stop rod (P2), and air cylinder hydraulic check stop rod (P4)

Advantages of an air-powered unit are combined in these assemblies with the flexibility of the saddle, base and travel lengths being available in one-inch increments.

The air cylinder is mounted in-line with the rest of the slide assembly to give a compact overall height. Adjustable stops are provided to regulate the length of travel.

There is a choice of models, one having a hydraulic check “P4” and one without “P2”. If any part of the saddle travel is to have a smooth, controlled rate of feed, a hydraulic check is recommended. Needle valve adjustment permits easy feed rate control. The approximate available feed rate at 80 psi air line pressure is 4 to 300 ipm. Hydraulic checks to meet other requirements are available upon request.

Way surfaces are oil grooved and scraped to ensure adequate lubrication and precision operation.

For available accessories see page 24.
DC section

Dovetail slide air and hydraulic cylinder (P1, H1)
air and hydraulic cylinder two position (P3, H3)

These slide assemblies are available with adjustable stops for accurate, two-position applications or less the stops where positioning is not critical. A broad range of two-position requirements can be met because the saddle, base and travel are available in one-inch increments.

There is a choice of either an air or a hydraulic cylinder mounted to the assembly. The cylinder is cushioned on both ends and is of the square-head, medium pressure type. When part or all of the travel is to be a controlled feed, a hydraulic cylinder is recommended.

Accurate reliable stopping is accomplished by a hardened adjustable stop screw, which is located on the slide centerline in each end of the saddle. This stop screw comes against a hardened rest button in the end plate. For ease in set-up, each stop screw is adjustable in either direction by 1/16 of an inch.

Way surfaces are oil grooved and scraped to ensure adequate lubrication and precision operation.

For available accessories (way covers not available on P3 and H3) see page 24.

Model 1-inch increments Dimensions (inches) Approx. weight (lbs)

<table>
<thead>
<tr>
<th>Min.</th>
<th>Max.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>X</th>
<th>Y</th>
<th>SL</th>
<th>BL</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC4</td>
<td>2</td>
<td>24</td>
<td>4</td>
<td>2½</td>
<td>5</td>
<td>¼</td>
<td>1</td>
<td>1½</td>
<td>¼-18</td>
<td>¾</td>
<td>1 ¼</td>
<td>½</td>
</tr>
<tr>
<td>DC6</td>
<td>2</td>
<td>26</td>
<td>6</td>
<td>3</td>
<td>2½</td>
<td>5½</td>
<td>¼</td>
<td>1</td>
<td>2</td>
<td>¼-18</td>
<td>¾</td>
<td>2 ¼</td>
</tr>
<tr>
<td>DC8</td>
<td>2</td>
<td>28</td>
<td>8</td>
<td>4</td>
<td>3½</td>
<td>5½</td>
<td>½</td>
<td>1</td>
<td>1½</td>
<td>¼-18</td>
<td>¾</td>
<td>3½</td>
</tr>
<tr>
<td>DC10</td>
<td>2</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>4½</td>
<td>6½</td>
<td>½</td>
<td>1</td>
<td>3½</td>
<td>¼-18</td>
<td>¾</td>
<td>4½</td>
</tr>
<tr>
<td>DC12</td>
<td>2</td>
<td>32</td>
<td>12</td>
<td>5</td>
<td>5½</td>
<td>6½</td>
<td>1¼</td>
<td>1½</td>
<td>4</td>
<td>¼-16</td>
<td>7½</td>
<td>9 ½</td>
</tr>
<tr>
<td>DC16</td>
<td>2</td>
<td>34</td>
<td>16</td>
<td>7½</td>
<td>7½</td>
<td>6½</td>
<td>1¼</td>
<td>1½</td>
<td>5</td>
<td>¼-14</td>
<td>11½</td>
<td>16</td>
</tr>
<tr>
<td>DC20</td>
<td>2</td>
<td>36</td>
<td>20</td>
<td>9</td>
<td>8½</td>
<td>7½</td>
<td>1½</td>
<td>1½</td>
<td>6</td>
<td>¼-14</td>
<td>11½</td>
<td>24</td>
</tr>
</tbody>
</table>

For dimensions not shown, see basic assemblies on page 18.
DC accessories

Dovetail slide

Mounting holes: Two types of mounting holes are offered on DC model slides:
Style #1 or Style #2, as shown in Figure 1. Both hole styles have the advantage of not
interfering with the mating way surfaces. Please specify longitudinal location when
ordering.

Accordion way covers: Covers are
recommended in applications (when way
wipers are not adequate) where there are
fine chips, dust or other foreign materials.
These covers are not available on models
DC2, DC3, two position models or on the
cylinder end of stop rod models.

Low friction way bearing material:

Bearing material is bonded to the mating
surfaces of the saddle and gib. This material
reduces the friction by approximately two-
thirds (with lubrication) and provides smooth
way motion with reduced stick-slip due to
directional values for static and dynamic friction.
It is recommended for high cycle applications
where the fit between the saddle and base
require little or no clearance, reduced
friction is required for accuracy or where
lubrication is prohibitive. Not available on
DC2 and DC3 slides.

Way wipers: The wipers on both ends of the
saddle provide protection to way surfaces
from chips, dirt and other contaminants.
Way wipers should remain engaged with the
slide base. To insure this engagement, base
lengths should increase as follows:

DC2 through DC8 models add 1 inch to the
base length.

DC10 through DC20 models add 2 inches
to the base length.

Limit switch stop rod: A heavy-duty,
oil-tight plug-in neutral position switch is
available on all stop rod and “CP” model slides.
This switch will give a signal at each end of
the travel and does not require resetting
when the travel limits are adjusted.

Limit switch side mount: The heavy-duty,
oil-tight plug-in limit switches are available
on all DC6 thru DC20 models that do not
require way covers. Five types of switch
arrangements are most commonly used:
SA1 – neutral position switch for signal at
each end of travel; SA2 – two switches for
signal at each end of travel; SA3 – switch
arrangement SA1 with feed switch; SA4 –
switch arrangement SA2 with feed switch;
SA5 – switch arrangement SA2 with home
switch. Please specify switch arrangement
number and length of feed stroke when
ordering.

Acme screw take-up nut: By means of a
simple adjustment, the backlash in the acme
screw nut assembly can be appreciably
reduced. This adjustment can also be used
to compensate for eventual wear in the lead
screw nut. This accessory is available on all
acme lead screw models except DC4. When
ordering this accessory, 1" should be added
to the base length.

Lubrication system – manual or
automatic: Either system provides a
convenient method of supplying a metered
quantity of oil to the slide assembly with the
inherent advantages of safety, cleanliness
and savings both in time and lubricant. The
manual system uses a pull handle pump
lubricator, while the automatic system uses
an electric gear motor pump lubricator with
a built in time control that can be set to
provide lubrication at proper time intervals.
Either lubrication system can be supplied
with nylon tubing or steel tubing. Please
specify nylon tubing or steel tubing when
ordering. The lubricator will be supplied
unmounted with six feet of nylon tubing.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Min.)</td>
<td>B</td>
</tr>
<tr>
<td>DC2</td>
<td>¼</td>
</tr>
<tr>
<td>DC3</td>
<td>¼</td>
</tr>
<tr>
<td>DC4</td>
<td>¾</td>
</tr>
<tr>
<td>DC6</td>
<td>1</td>
</tr>
<tr>
<td>DC8</td>
<td>1 ½</td>
</tr>
<tr>
<td>DC10</td>
<td>1 ¾</td>
</tr>
<tr>
<td>DC12</td>
<td>1 ¾</td>
</tr>
<tr>
<td>DC16</td>
<td>1 ¾</td>
</tr>
<tr>
<td>DC20</td>
<td>2</td>
</tr>
</tbody>
</table>

*Round up to 1/2" increment, "Y" minimum = 1".
Special assemblies
Dovetail slide modules

Special applications may require a special module to fit your unique requirements. Engineers at Gilman USA have years of experience fitting modules to the most challenging applications. Pictured below are just a few of the many special modules assembled for Gilman USA customers around the world. For information on these or other special applications, please contact Gilman USA sales engineering for personalized assistance.

DC12/DC10/4000 manual positioned motorized spindle and slide assembly for on-site machining applications.

DC20/GMS special compound assembly. Spindle is a 5 H.P. integral motorized assembly with a special arbor and outboard bearing support. Slide is a DC20 with a LRA drive and digital scales. The assembly is used to machine wing sections for the commercial airline industry.

Dual 3500 motorized spindle assembly mounted to DC10 manual lead screw adjusted slides. This assembly allows for variable spindle centerline distance and location of dual assemblies for machining.

6500 gear driven motorized vertical travel assembly with #50 NMTB overarm support assembly. DC16 manual adjusted slide for tool position. Application: production of automotive parts.

Dual special grinding spindles mounted to DC10 servo driven slides. Assembly provided with lower manual adjustment. Designed for versatility in angular position.
Special assemblies
Dovetail slide modules

X/Y DC6 assembly with angle bracket for manual adjustment in two axes.

A pair of DC8/2750 dual motorized spindle and slide assemblies powered with air cylinders and double acting hydro-check for feed capability in both directions. Application: milling aluminum extrusions. One head to machine the end while the other machines the circumferences.

DC10/DC8/4000 special motor driven compound milling module with ball screw drive, cavity cover and manual adjustment for spindle position. Application: aerospace industry.
Idea bulletins
To equip the world with Gilman USA knowledge

The following pages contain applications that companies have used to solve manufacturing challenges. Gilman USA rises to the occasion every time, to provide technical consultation and expertise. Whatever the requirements, Gilman USA can meet industry needs while working to the highest standards worldwide. Don’t believe it? Visit the Grafton, WI plant and see firsthand, the facility where Gilman USA precision slides are born.

Number 2013:
Custom in-line compound slide for cable sheath forming machines. 28

Number 2014:
Programmable, adjustable, opposing milling modules 29
Idea bulletin: Slides

Custom in-line compound slide for cable sheath forming machine

Higher accuracies allow use of thinner material and improve output 60%

Application
A manufacturer of cell tower cables needed to improve the accuracy and capability of its machinery in order to allow the use of thinner material and to lower the cost of production.

Challenge
Inconsistencies in the cable shielding allowed moisture and static to enter and cause interference. The manufacturer needed a more repeatable forming process to ensure that the welding of the shielding remained constant. To increase output, the manufacturer wanted to use thinner material for the shielding layer and increase the speed of the forming process. Planning ahead, they also asked for a machine that would be accurate enough to manufacture fiber optic cable in the near future.

Solution
The customer had previously built its own machine slides but looked for outside engineering to help with this new project. A custom machine tool builder specializing in roll-forming automation equipment was chosen to quote the project because of its experience and attention to detail in every phase of the project from feasibility through debugging. The machine base is a standard Gilman USA dovetail slide with two standard dovetail slides mounted on top. The top two slides move in and out to accommodate different size cable by a special left-hand and right-hand acme lead screw. Two .001” graduated dials provide motion controls. Special location lubrication nipples are installed on the top two slides.

Cost savings
The final machine increased output by 60% while providing the adaptability, repeatability and accuracies required to TIG weld copper, high frequency weld aluminum and laser weld stainless steel cell tower cable shielding.

Sales point
The components making up this product are all standard DC designs. By solving the application challenges with a group of standard designs in a custom configuration, the customer’s product cost was minimized.

Technical specifications
Bottom slide:
- DC6-12-14-M-C1-2
- 5/8-10 acme left hand lead screw
- No lubrication fittings
- .001” Graduated dial

Top slides:
- DC4-(4)(4)-12-M-SPC1 (2)(2)
- 1/2-10 acme left-hand and right-hand lead screw
- Special lubrication fitting location
- .001” Graduated dial

All dimensions in inches unless otherwise indicated.
Application
A processor of coiled metal wanted to reduce handling time and automate machining operations. The problem was that several different widths and thicknesses of material and hundreds of different milling patterns were combined to produce the company’s thousands of products.

Challenge
Originally the milling operations were done after the material was cut to length. The machine envisioned would position a length of material while still connected to the coil and mill a specific pattern. The company wanted to eliminate the handling and fixturing required for machining after cutting to length.

Solution
After intensive analysis of the multiple operations required downstream of the cutting-to-length operation, it was determined that the milling operation would be better performed before the material was cut off from the coil.

To meet all requirements, this custom machine tool was designed to be adjustable in five axes. The material strip is processed continuously as it moves through the machine. The multi-tooth milling head is first fed into the material in two axes. Second, the material is fed through the machine and into the milling head for the required distance. Belt driven spindles are used for the milling operation. The “Y” and “Z” axes hardened way slides feeding the spindle are controlled by hydraulic cylinders. The “X” axis is a dovetail slide used for manual adjustments of the two spindles relative to each other. The fourth and fifth axes are for adjusting milling angles and material widths. The machine has been a tremendous success. Hundreds of complicated and error prone operations have been eliminated. Productivity has increased, and the company has been able to expand its product offering with no additional machinery or personnel required.

Cost savings
Not only is the design and operation of the machine successful, but the Gilman USA components that made it possible are all stock or standard products. This use of existing designs kept the project cost low.

Sales point
By using stock and standard components to achieve the customer’s design goals, cost and delivery time were both minimized.

Technical specifications
- 2 each HWS12-12-21-H2-3 slide assembly with hydraulic cylinder drive
- 2 each HWL12-22-30-H3-5 slide assembly with hydraulic cylinder drive
- 2 each DC16-19-36-M-E1-15 slide assembly with acme screw with right angle hand wheel
- 2 each 6500C-X2M-50-SB3 belt-driven, motorized spindle
- The customer provided the angle brackets and assembled the machine on their shop floor.

Coil material is processed continuously by dual multi-axis modules as it moves through the machine. A belt-driven spindle powers each milling head, which is fed into the material by two hardened way slides. A manual dovetail slide positions the modules for processing different size material coils.